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Abstract. We analyze the distribution of success of musicians, comparing a stretched exponential (found
by J.A. Davies [Eur. Phys. J. B 27, 445 (2002)]) with a distribution of the family of the q-exponential
(presenting an intermediate power-law regime with a crossover to an exponential tail). We find that both
assumptions yield comparable results, within the available range of data, hence a definite conclusion can-
not yet be taken. But this example joins many others that has been found to be fairly described by
q-exponentials (or variations of it), which may be indicative that there is a (significantly large) class of
systems described by nonextensive statistical mechanics, from where q-exponentials naturally appear.

PACS. 43.75.+a Music and musical instruments – 01.30.-y Physics literature and publications – 87.23.-n
Ecology and evolution

In a recent letter, Davies [1] has analyzed the interesting
problem of measuring the success of musicians, and has
made a comparison with measures of success of physicists
[2], concluding that the distribution for the musicians fol-
lows a stretched exponential, similar to the distribution
for physicists found in [2]. The analysis was performed
by means of the inverse cumulative distribution Pc(x) of
the number of bands in the UK Top 75, over a period of
50 years. Interesting remarks were made regarding simi-
larities and differences among artistic and scientific works,
both of them creative human activities. The author has
assumed that Pc is given by a stretched exponential

Pc(x) = exp[−(x/x0)c] (c < 1), (1)

and has fitted the data to it, and then has concluded what
is strongly stated in the Title of his letter. I would like to
call attention of the readers that, although the agreement
between data and the proposed equation is good, it is not
conclusive, and should be viewed, at best, as indicative.

In order to illustrate this point, we used the same data
(the points were “captured” from Davies Figs.) to fit a
different distribution function, that belongs to the fam-
ily of the q-exponential, which naturally emerges from
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nonextensive statistical mechanics [3–5]. The simplest of
these distributions is the q-exponential function itself,
eq(x) ≡ [1 + (1 − q)λqx]1/(1−q) (For our purposes here
we can limit ourselves to q > 1, and λq ≡ −βq, with
βq > 0.) This distribution has a power-law tail, up to log-
arithmic corrections. Some complex phenomena present
an intermediate power-law regime, with a crossover to an
exponential tail, instead of a power-law tail. To deal with
these systems, it becomes necessary a generalization of
the former equation, that is achieved as follows (see [6]
for a detailed explanation). The q-exponential is solution
of dPc/dx = −βqP

q
c . If we consider the more general dif-

ferential equation, dPc/dx = −β1Pc − (βq − β1)P q
c (with

0 � β1 � βq), its solution is given by

Pc(x) =
[
1 − βq

β1
+

βq

β1
e(q−1)β1x

] 1
1−q

. (2)

β1 = 0 reduces equation (2) to the q-exponential, and
q = 1 reduces it to the usual exponential (with βq = β1),
so it is, in fact, a generalization of the q-exponential
(which is, in turn, a generalization of the usual exponen-
tial function). This distribution presents three regimes:
for 0 ≤ x � x∗ ≡ 1/[(q − 1)βq], P (x) ∼ 1 − βqx
(which is equivalent to q = 0); for x∗ � x � x∗∗ ≡
1/[(q− 1)β1], we have the intermediate power-law regime,
P (x) ∼ [(q − 1)βqx]1/(1−q); finally, for x � x∗∗, we have
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Fig. 1. Inverse (non normalized) cumulative distribution of
bands in the UK Top 75. Data captured from Figure 1b of [1].
Solid line: q-exponential with crossover to exponential (Eq. (2)
with q = 2.2, βq = 0.16, and β1 = 0.01); Dashed line: stretched
exponential (Eq. (1) with x0 = 9.37 and c = 0.5). Total number
of bands: 6107. It is indicated the crossover regions: power-
law for x∗ � x � x∗∗, exponential tail for x � x∗∗. Inset:
The same data and curves, abscissa with the auxiliary variable
faux(x) = log[1−βq/β1+βq/β1 e(q−1)β1x], ordinate in log scale.
The two highest ranking data points fall out of the curves and
are not showed in the inset. The slope of this linearized curve
is 1/(1 − q), q ≈ 2.2. Correlation coefficient R2 = 0.9975.

an exponential tail P (x) ∼ (βq/β1)1/(1−q) e−β1x (which
is equivalent to q = 1). So, the crossover between the
power-law and the exponential regime occurs at x∗∗. We
assumed that the inverse cumulative distribution Pc(x)
of bands in the UK Top 75 list obeys equation (2). Fig-
ure 1 shows the results (best fit is achieved with q = 2.2,
βq = 0.16, and β1 = 0.01), together with those obtained
by Davies (c = 0.5, x0 = 9.37 in Eq. (1)). It becomes
clear that both assumptions (stretched exponentials and
q-exponentials with crossover) are able to describe the
data. Figure 2 shows the histogram (density distribution
obtained by P (x) = −dPc/dx) corresponding to Figure 1.
Again we see the similarity between both proposed distri-
butions, the q-exponential with crossover slightly better
for the region of small number of weeks.

Recalling Kuhn [7], Davies makes interesting remarks
about shifts in scientific paradigms. The interest in com-
plex systems by physicists in recent years represents one
of these shifts, as it is the point of view of Parisi [8]
(just to cite one), and we have the privilege of being
witnesses of this revolution. Complex systems are plen-
tifully populated by power-laws. Although such distribu-
tions are known since long (see, for instance, Pareto’s [9],
Gutenberg-Richter’s [10], and Zipf’s [11] laws), only in
the last decades we are realizing their ubiquity [12–15], as
there are also ubiquitous the celebrated Gaussians.

The emergence of nonextensive statistical mechanics
follows the historical stream aiming to better understand
complex systems. Many of such systems has recently be-
ing verified to be well described by this formalism, and

1 10 100 1000
Weeks

1

10

100

1000

N
um

be
r 

of
 b

an
ds

Fig. 2. Histogram of the number of bands that achieved n
weeks in the UK Top 75 (equivalent of Fig. 1a of [1], data
captured from that Figure). Solid line: q-exponential with
crossover to exponential; dashed line: stretched exponential.

ultimately by q-exponentials. In addition to the work on
scientific citations [16], already referred to by Davies, we
may mention the works on turbulence [17], motion of liv-
ing organisms [18], Internet traffic [19], urban agglomer-
ation [20], distribution of goals in football championships
[21], re-association in folded proteins [6], quantitative
linguistics [22], and cosmic rays [23] (the last three ex-
amples present crossover in the distributions). We also
mention that the distribution of the number of different
sexual partners in a Swedish survey, recently published by
Liljeros et al. [24] may be fairly well fitted with q-
exponentials (adjusted for Pc(1) = 1, and q = 1.40,
βq = 0.3 for female distributions, and q = 1.58, βq = 0.18
for male distributions). Also distribution of earthquakes
can be represented by q-exponentials (e.g., Fig. 1 of [25]
with q = 2.0 and βq = 0.32).

This kind of “competition” between stretched expo-
nentials and q-exponentials eventually appears in the lit-
erature. It was illustrated by Figure 3 of reference [26]
that just fittings cannot unequivocally lead to a deci-
sion between which of them is better, specially when the
data range only a few decades. A stretched exponential
tail or a power law (q-exponential) tail are very different
for very large quantities (far in the tail), a region where
frequently there is no available data, and extrapolations
should be carefully taken, once one or another distribution
would lead to completely different results. Similar reason-
ing and care are necessary when comparing stretched ex-
ponentials with more complex distributions, which present
crossovers, like equation (2). Log-normal distributions are
also frequently invoked to describe complex systems, par-
ticularly economical ones [27–29]. In reference [30], it was
compared log-normal distributions with q-Gaussians with
crossover (a variation of q-exponentials), also there both
being similar.

We would like to conclude that identifying possi-
ble probability distributions is an important task, once
it may lead to the development of models to further
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understand the underlying dynamics of systems. But they
are first steps, hence they are not conclusive. Many ex-
amples are showing that q-exponentials (or variations of
it) are at least as good as other distributions; this may
be indicative that a variety of systems belongs to a class
described by nonextensive statistical mechanics (which in-
cludes, as a particular case, Boltzmann-Gibbs formalism).
Since we are probably living days of shiftings of scientific
paradigms, it is very natural that different approaches to
the same problem claim to be the proper one. As History
has being teaching us, only time can bring us certainty . . .
At least until the next revolution!

Useful remarks from Constantino Tsallis are gratefully ac-
knowledged. I also acknowledge the referees, whose remarks
improved the paper.
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